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- Antibody language models aim to unlock insights into 
immune diversity

- Current training corpora are dominated by a few donors
- OAS-explore is an open-source pipeline to sample more 

representative training sets through flexible filtering

- The OAS database with 2.4 billion antibody sequences is 
commonly used for antibody language model pre-training

- Just 13 individuals from two publications account for 71% 
of sequences in the database 

We trained RoBERTa models using a masked language 
modeling objective on 6 GPUs for 1-6 days per model.

4 Model training

5 Results
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Figure 1: Unique sequences per publication found in the Observed Antibody Space 
(OAS) database

3 Processing pipeline
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Generalization to unseen human individuals is poor:
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Figure 2: Masked language modeling loss (MLM) of models trained on 

sequences from 1 (HIP-1, HIP-2, HIP-3), 3 (Soto-All) or 630 (OAS-wo-Soto) 
individuals on test sets corresponding to every training configuration. 

Including more individuals in training data does not improve 
generalization:
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Figure 3: Average MLM loss on sequences from held-out individuals, Subject-237, 
-1009, -1212, and -1848 are from vaccine studies by the same research group

Batch effects from different experimental protocols strongly impact 
model performance:
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We applied similar experimental designs to test generalization 
across human individuals, heavy and light antibody chains and 
human versus mouse antibody sequences.
 

- Models trained only on heavy or only on light chain sequen-
ces are not able to fill in the other chain.

- Generalization between human and murine antibody  
sequences is better, but still very limited.

Figure 4: Average MLM loss on antibody sequences from individuals generated 
with different experimental protocols

5 Conclusion
- Broader donor diversity in training data does not improve 

generalization of models to unseen human repertoires
- But diverse models are able to compensate publication 

specific effects
- Even better balancing between individuals, larger training 

datasets or improved model architectures may be required 
to achieve robust performance across individuals
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