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1 Introduction

- Antibody language models aim to unlock insights into
immune diversity

- Current training corpora are dominated by a few donors

- OAS-explore is an open-source pipeline to sample more
representative training sets through flexible filtering

2 Motivation
- The OAS database with 2.4 billion antibody sequences is
commonly used for antibody language model pre-training
- Just 13 individuals from two publications account for 71%
of sequences in the database
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Figure 1: Unique sequences per publication found in the Observed Antibody Space
(OAS) database

3 Processing pipeline
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4 Model training

We trained RoBERTa models using a masked language

modeling objective on 6 GPUs for 1-6 days per model.
Model name Number of individuals Training data size
HIP-1, HIP-2, HIP-3 1 individual per model 3x 30M sequences
Soto-All 3 individuals 90M sequences
OAS-wo-Soto around 630 individuals 90M sequences
5 Results

We applied similar experimental designs to test generalization
across human individuals, heavy and light antibody chains and
human versus mouse antibody sequences.

- Models trained only on heavy or only on light chain sequen-
ces are not able to fill in the other chain.

- Generalization between human and murine antibody
sequences is better, but still very limited.

Generalization to unseen human individuals is poor:
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Figure 2: Masked language modeling loss (MLM) of models trained on
sequences from 1 (HIP-1, HIP-2, HIP-3), 3 (Soto-All) or 630 (OAS-wo-Soto)
individuals on test sets corresponding to every training configuration.
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Including more individuals in training data does not improve

generalization:
Galson et al.
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Figure 3: Average MLM loss on sequences from held-out individuals, Subject-237,
-1009, -1212, and -1848 are from vaccine studies by the same research group
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Batch effects from different experimental protocols strongly impact
model performance:
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Figure 4: Average MLM loss on antibody sequences from individuals generated
with different experimental protocols

5 Conclusion

- Broader donor diversity in training data does not improve
generalization of models to unseen human repertoires

- But diverse models are able to compensate publication
specific effects

- Even better balancing between individuals, larger training
datasets or improved model architectures may be required
to achieve robust performance across individuals
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