

Revealing bias in antibody language models through systematic training data processing with OAS-explore

Wiona Sophie Glänzer ¹, Sai T. Reddy ^{1,2}, Alexander Yermanos ^{2,3}

¹ Department of Biosystems Science and Engineering, ETH Zurich, ² Botnar Institute of Immune Engineering, ³ Center for Translational Immunology, University Medical Center Utrecht

1 Introduction

- Antibody language models aim to unlock insights into immune diversity
- Current training corpora are dominated by a few donors
- OAS-explore is an open-source pipeline to sample more representative training sets through flexible filtering

2 Motivation

- The OAS database with 2.4 billion antibody sequences is commonly used for antibody language model pre-training
- Just 13 individuals from two publications account for 71% of sequences in the database

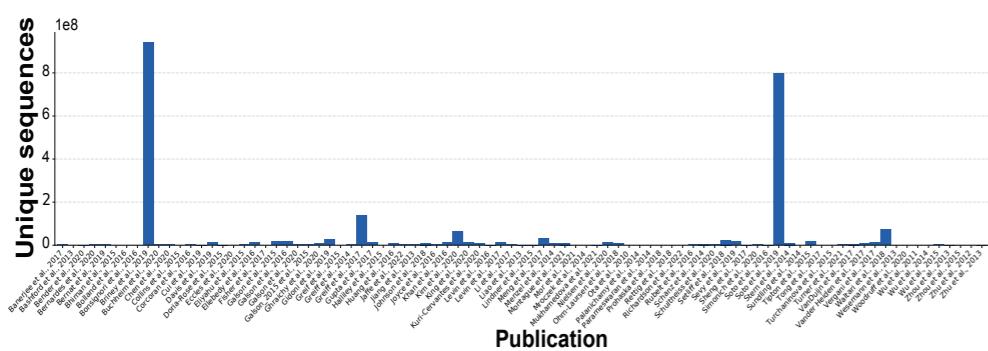
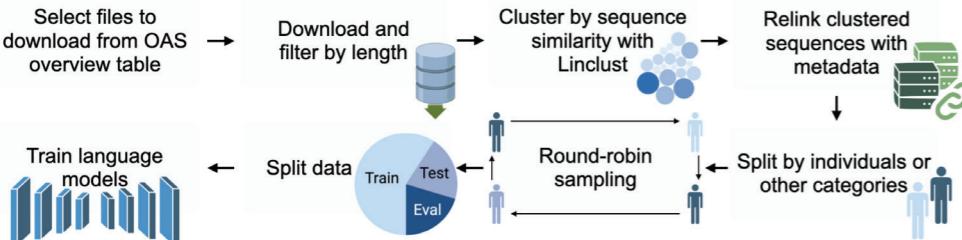


Figure 1: Unique sequences per publication found in the Observed Antibody Space (OAS) database

3 Processing pipeline



4 Model training

We trained RoBERTa models using a masked language modeling objective on 6 GPUs for 1-6 days per model.

Model name	Number of individuals	Training data size
HIP-1, HIP-2, HIP-3	1 individual per model	3x 30M sequences
Soto-All	3 individuals	90M sequences
OAS-wo-Soto	around 630 individuals	90M sequences

5 Results

We applied similar experimental designs to test generalization across human individuals, heavy and light antibody chains and human versus mouse antibody sequences.

- Models trained only on heavy or only on light chain sequences are not able to fill in the other chain.
- Generalization between human and murine antibody sequences is better, but still very limited.

Generalization to unseen human individuals is poor:

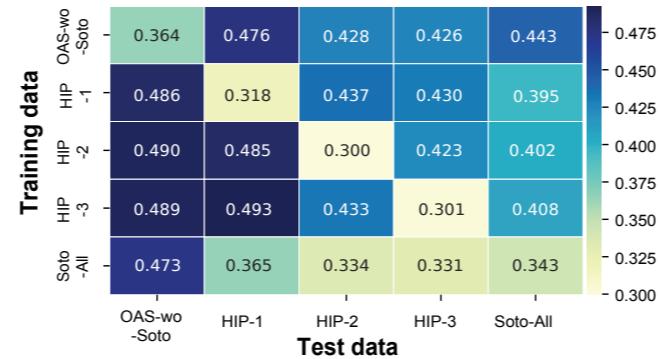


Figure 2: Masked language modeling loss (MLM) of models trained on sequences from 1 (HIP-1, HIP-2, HIP-3), 3 (Soto-All) or 630 (OAS-wo-Soto) individuals on test sets corresponding to every training configuration.

Including more individuals in training data does not improve generalization:

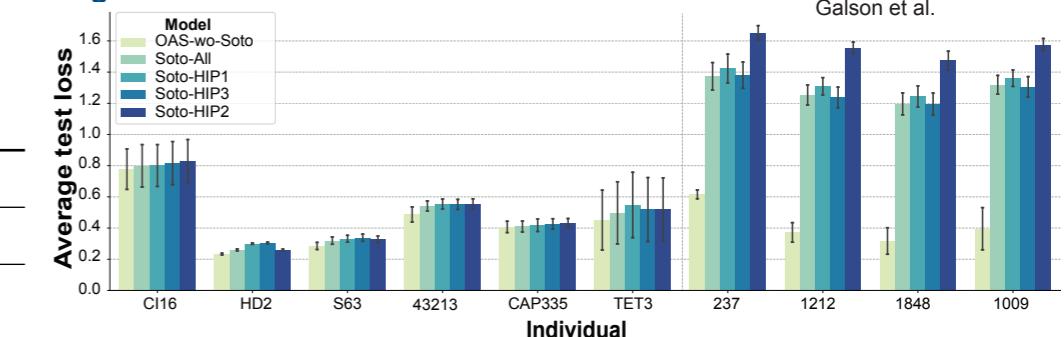


Figure 3: Average MLM loss on sequences from held-out individuals, Subject-237, -1009, -1212, and -1848 are from vaccine studies by the same research group

Batch effects from different experimental protocols strongly impact model performance:

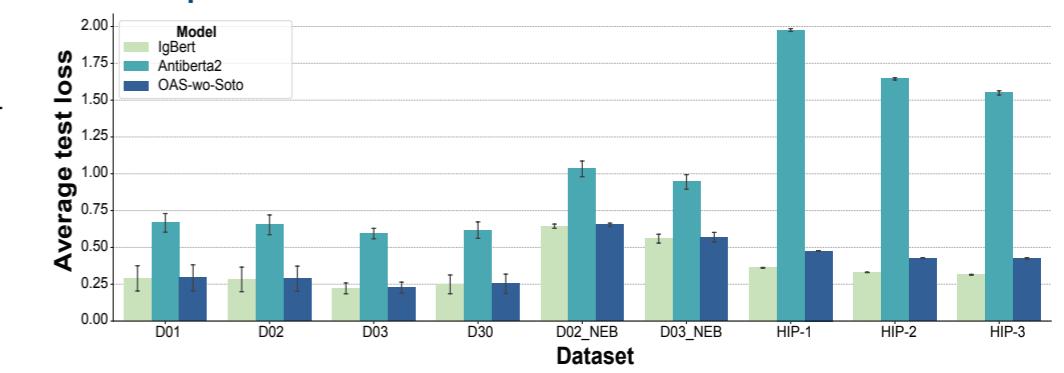


Figure 4: Average MLM loss on antibody sequences from individuals generated with different experimental protocols

5 Conclusion

- Broader donor diversity in training data does not improve generalization of models to unseen human repertoires
- But diverse models are able to compensate publication specific effects
- Even better balancing between individuals, larger training datasets or improved model architectures may be required to achieve robust performance across individuals